互いに素な2数の割合は $6/\pi^2$ となることが知られている。計算結果を示すと次のようになる。

N	N 確率	
10000	0.60794971000000	0.020
100000	0.60793015070000	0.050
1000000	0.60792710478300	0.801
2000000	0.60792734963875	1.903
3000000	0.60792720510344	2.834
4000000	0.60792715596994	4.126
5000000	0.60792724184956	5.157
6000000	0.60792716622397	6.269
7000000	0.60792712656978	7.371
8000000	0.60792716999323	8.582
9000000	0.60792713597643	9.774
10000000	0.60792712854483	11.326
20000000	0.60792713478125	25.507
30000000	0.60792711107300	73.570
40000000	0.60792710408461	123.645
50000000	0.60792711246900	199.182
60000000	0.60792710742527	285.482

 $6/\pi^2$ (=0.60792710185402662866327677925837)と比較すると、0.6079271 まで一致している。

計算方法については、最初はユークリッドの互徐法で計算した場合、N の自乗に計算速度が比例する。それよりも早いアルゴリズムとして、素因数分解を行うことも考えられるが、全ての数を調べつくすので、素数をエラトステネスの篩により求めながら素数の倍数を記憶しておくことにより素因数分解を計算せず、素因数を求めるのが比較的早く計算できる。

```
integer i,j,n,ii

integer(8) icount

real finish

integer ins(10000000,8)

integer(1) s(10000000),kosu(10000000)

read(*,*) n

do 10 i=1,n

s(i)=1

kosu(i)=0

10 continue

do 20 i=2,n

if(s(i).eq.1) then

kosu(i)=kosu(i)+1

ins(i,kosu(i))=i

do 30 j=i*2,n,i
```

```
kosu(j)=kosu(j)+1
                   ins(j,kosu(j))=i
s(j)=0
30
                continue
           endif
20
       continue
       icount=0
       do 80 i=2,n
           ii=i
           do 50 j=1,kosu(i)
ii=ii/ins(i,j)*(ins(i,j)-1)
50
            continue
           icount=icount+ii
80
       continue
       icount=icount*2+1
      call cpu_time(finish)
write(*,*) icount,icount/dble(n)/dble(n)
write(*,*) "Time=",finish
       end
```

以上の過程ででてきた素因数の種類の数の分布を計算してみた。

表 約数の種類の数(0は素数の個数+1であるが、これには1を含んでいるためである)

	0	1	2	3	4	5	6	7	8
100	26	10	56	8	0	0	0	0	0
1000	169	25	508	275	23	0	0	0	0
10000	1230	51	4097	3695	894	33	0	0	0
100000	9593	108	33759	38844	15855	1816	25	0	0
1000000	78499	236	288726	379720	208034	42492	2285	8	0
10000000	664580	555	2536838	3642766	2389433	691209	72902	1716	1
100000000	5761456	1404	22724609	34800362	25789580	9351293	1490458	80119	719

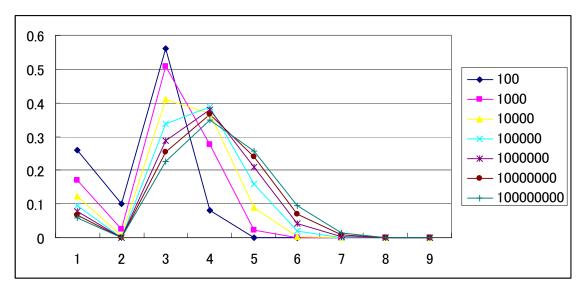
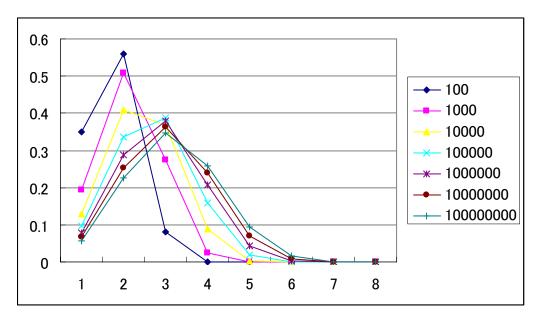
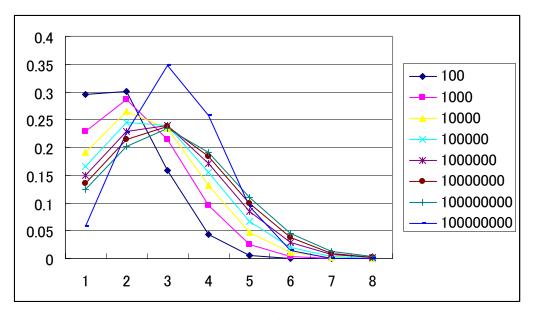


図 上表から比率を計算して示した。

そこで、合成数の素因数の種類はなかなか増えないようだ。素数の数は素数定理として知られている。さて、1 を除いて、素数と素数のべき乗を1 として計算した分布(下図)については Erdős –Kac 定理によると平均 ln ln (n) 分散 ln ln (n)の正規分布に従うらしい。その正規分布と1 億のときの分布を下図に示す。



素因数の種類の分布



Erdos-Kac 定理による分布。最後の値は計算値を比較のために示した。

参考文献

互いに素 http://ja.wikipedia.org/wiki/%E4%BA%92%E3%81%84%E3%81%AB%E7%B4%A0

素因数の種類

http://mathworld.wolfram.com/DistinctPrimeFactors.html

Erdős –Kac 定理

http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Kac_theorem http://mathworld.wolfram.com/Erdos-KacTheorem.html

<u>Paul Erdős</u> and <u>Mark Kac</u>, "The Gaussian Law of Errors in the Theory of Additive Number Theoretic Functions", *American Journal of Mathematics*, volume 62, No. 1/4, (1940), pages 738—742.